Activation/attenuation model for RNase H. A one-metal mechanism with second-metal inhibition.

نویسندگان

  • J L Keck
  • E R Goedken
  • S Marqusee
چکیده

Ribonucleases H (RNases H) comprise a family of metal-dependent enzymes that catalyze the hydrolysis of the 3'-O---P bond of RNA in RNA.DNA hybrids. The mechanism by which RNases H use active-site metal(s) for catalysis is unclear. Based upon the seemingly contradictory structural observations of one divalent metal bound to Escherichia coli RNase HI and two divalent metals bound to the HIV RNase H domain, two models explaining RNase H metal dependence have been proposed: a one-metal mechanism and a two-metal mechanism. In this paper, we show that the Mn2+-dependent activity of E. coli RNase HI is not consistent with either of these mechanisms. RNase H activity in the presence of Mn2+ is complex, with activation and inhibition of the enzyme at low and high Mn2+ concentrations, respectively. Mutations at Asp-134 result in a partial loss of this inhibition, with little effect on activation. Neutralization of His-124 by mutation to Ala results in an enzyme with a significantly decreased specific activity and an absolute loss of Mn2+ inhibition. Inhibition by high Mn2+ concentrations is shown to be due to a reduction in kcat; this attenuation has a critical dependence on the presence of His-124. Based upon these results, we propose an "activation/attenuation" model explaining the metal dependence of RNase H activity where one metal is required for enzyme activation and binding of a second metal is inhibitory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Co-crystal of Escherichia coli RNase HI with Mn2+ ions reveals two divalent metals bound in the active site.

Ribonuclease H (RNase H) selectively degrades the RNA strand of RNA.DNA hybrids in a divalent cation-dependent manner. Previous structural studies revealed a single Mg(2+) ion-binding site in Escherichia coli RNase HI. In the crystal structure of the related RNase H domain of human immunodeficiency virus reverse transcriptase, however, two Mn(2+) ions were observed suggesting a different mode o...

متن کامل

Two-metal ion mechanism of RNA cleavage by HIV RNase H and mechanism-based design of selective HIV RNase H inhibitors.

Human immunodeficiency virus (HIV) RNase H activity is essential for the synthesis of viral DNA by HIV reverse transcriptase (HIV-RT). RNA cleavage by RNase H requires the presence of divalent metal ions, but the role of metal ions in the mechanism of RNA cleavage has not been resolved. We measured HIV RNase H activity associated with HIV-RT protein in the presence of different concentrations o...

متن کامل

Metal binding and activation of the ribonuclease H domain from moloney murine leukemia virus.

The RNase H family of enzymes degrades RNA in RNA.DNA hybrids in a divalent cation-dependent manner. RNases H from diverse sources such as Escherichia coli and human immunodeficiency virus (HIV) share homologous metal-binding active sites, and the activity of the RNase H domain of reverse transcriptase (RT) is required for retroviral replication. The isolated RNase H domain from HIV RT, however...

متن کامل

Mechanism-Based Studies of the Active Site-Directed Inhibition and Activation of Enzyme Transketolase

Derivatives of phenyl-keto butenoic acids have been reported to be inhibitors of pyruvate decarboxylase, (PDC). The inhibition of transketolase, a thiamine requiring enzyme such as PDF, by meta nitrophenyl derivative of 2-oxo-3-butenoic acid (MNPB) is reported here. These studies indicate that the inhibitor binds to the enzyme at the active site. A two-step inhibition was observed, first th...

متن کامل

Interaction of viral proteins with metal ions: role in maintaining the structure and functions of viruses.

Metal ions are integral part of some viral proteins and play an important role in their survival and pathogenesis. Zinc, magnesium and copper are the commonest metal ion that binds with viral proteins. Metal ions participate in maturation of genomic RNA, activation and catalytic mechanisms, reverse transcription, initial integration process and protection of newly synthesized DNA, inhibition of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 273 51  شماره 

صفحات  -

تاریخ انتشار 1998